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To develop a method for many-fermion systems that is efficient in
Monte Carlo sense and polynomial in particle number

And with no uncontrolled approximations
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Computational demands

 Population of random walkers divided into distributed memory
« Drift, diffuse and branch walkers in each processor
 Population balanced across distributed memory

 Process iterated

 Ideally suited for BlueGene/L

 Memory Requirements, > 5 Megabytes/processor

« Active Data, > 2.5 Megabytes/processor

« Don’t yet know how complexity grows with particle number except
not N!

 Previous pitfalls that lead to exponential growth are avoided
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Research aims

« Understand and optimize method for:
— Atoms
— Molecules
— Nuclear physics
— Extensive systems

 Apply to significant problems in physics and chemistry
— Extend to temperature >0

— Apply to hydrogenic systems

« Development, experiments and production demand very high
performance computing
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Diffusion Monte Carlo

Diffusion Monte Carlo solves Schrodinger Equation in Imaginary time.

But how can Monte Carlo get “chemical accuracy,” about 10-°relative
error in eigenvalue.

Importance sampling:
Construct random walk for ¥ (RY (R)

Where Y ¢(R) is a “guiding function,” ideally equal to exact solution,
but approximation is OK.
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Importance Sampled Diffusion

Random walk is a Langevin process with branching
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Finds fundamental modes very quickly and efficiently in many
dimensions.

Fermions require solutions not everywhere positive!

What to do?
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Fixed-Node Application

Standard: impose non-physical boundary
condition that Y =0wheny ;=0

This is an uncontrolled approximation!
How to do better?
Use walkers that carry signs

By itself, this device accomplishes nothing
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Released-node DMC with signed

walkers unstable




Ingredients for stability

1) Distinct positive guiding functions for positive and negative
walkers

YE(R)={YZ(R)+c*Yi(R) £cY,(R)

2) Positive and negative walkers paired with correlated
diffusion

L

3) Cancellation between positive and negative walkers with
expected future contributions conserved
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H, molecule
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With three ingredients DMC is stable
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Other Systems Studied

e He atom
e Beatom
— 14 He atoms in periodic system R

— 7 Free Fermions in periodic system

— 19 Free Fermions in periodic system >~ PRL 85 3547 (2000)
— 27 Free Fermions in periodic system

/
e In progress

— 54 He atoms in periodic system
— Li, molecule

— Be, molecule

— B, molecule

— Two-dimensional electron gas
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